

Discipline:ELECTRICAL ENGINEERING	Semester :3rd	Name of the Teaching Faculty: BISWANATH PRATAP SINGH
Subject: INTRODUCTION TO ELECTRIC GENERATION SYSTEMS	No. of days/per week class allotted:03	Semester From date : <u>14.07.2025</u> To:- <u>15.11.2025</u> No. of weeks:18
Week	Class Day	Theory Topics
1 ST	1 ST	Layout and working of a typical thermal power plant with steam turbines and electric generators
	2 ND	Layout and working of a typical thermal power plant with steam turbines and electric generators
	3 RD	Layout and working of a typical thermal power plant with steam turbines and electric generators
2 ND	1 ST	Properties of conventional fuels used in the energy conversion equipment used in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission action
	2 ND	Properties of conventional fuels used in the energy conversion equipment used in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission action
	3 RD	Safe Practices and working of various thermal power plants: coalbased, gas- based, diesel-based, and nuclear-based
3 RD	1 ST	Safe Practices and working of various thermal power plants: coalbased, gas- based, diesel-based, and nuclear-based
	2 ND	Functions of the following types of thermal power plants and their major auxiliaries
	3 RD	Functions of the following types of thermal power plants and their major auxiliaries
4 TH	1 ST	Coal fired boilers: fire tube and water tube
	2 ND	Gas/diesel based combustion engines
	3 RD	Gas/diesel based combustion engines
5 TH	1 ST	Types of nuclear reactors :Disposal of nuclear waste and nuclear
	2 ND	Types of nuclear reactors :Disposal of nuclear waste and nuclear s
	3 RD	Gas/diesel based combustion engines
6 TH	1 ST	Coal fired boilers: fire tube and water tube
	2 ND	Large Hydropower Plants
	3 RD	2.1 Energy conversion process of hydro power plant
7 TH	1 ST	2.2 Classification of hydro power plant: High ,medium and low head
	2 ND	2.2 Classification of hydro power plant: High ,medium and low head power plant
	3 RD	High head-Pelton turbine
8 TH	1 ST	Medium head-Francis turbine

	2 ND	Low head-Kaplan turbine
	3 RD	Safe Practices for hydro power plants
9 TH	1 ST	Locations of these different types of large hydro power plants in India
	2 ND	Locations of these different types of large hydro power plants in India
	3 RD	Micro-Hydropower Plants
	1 ST	Lay out of micro hydro power plants
10 TH	2 ND	Lay out of micro hydro power plants
	3 RD	3.2 Different types of micro-hydro turbines for different heads: 3.2.1 Pelton turbines 3.2.2 Francis turbines 3.2.3 Kaplan turbines
	1 ST	Pelton turbines
11 TH	2 ND	Francis turbines
	3 RD	Kaplan turbines
	1 ST	Locations of these different types of micro-hydro power plants in India
12 TH	2 ND	Locations of these different types of micro-hydro power plants in India
	3 RD	Economics of Power Generation and Interconnected Power System
	1 ST	Related terms: connected load, firm power, cold reserve, hot reserve, spinning reserve. Base load and peak load plants; Load curve, load duration curve, integrated duration curve
13 TH	2 ND	Related terms: connected load, firm power, cold reserve, hot reserve, spinning reserve. Base load and peak load plants; Load curve, load duration curve, integrated duration curve
	3 RD	Cost of generation: Average demand, maximum demand, demand factor, plant capacity factor, plant use factor, diversity factor, load factor and plant load factor
	1 ST	Cost of generation: Average demand, maximum demand, demand factor, plant capacity factor, plant use factor, diversity factor, load factor and plant load factor
14 TH	2 ND	Choice of size and number of generator units
	3 RD	Combined operation of power station Causes, Impact and reasons of Grid system fault: State grid, national grid, brownout and blackout; sample blackouts at national and international level.
	1 ST	Combined operation of power station Causes, Impact and reasons of Grid system fault: State grid, national grid, brownout and blackout; sample blackouts at national and international level.
15 TH	2 ND	EXTRA CLASS
	3 RD	DOUBT CLEARING CLASSES
	1 ST	EXTRA CLASS
16 TH	2 ND	DOUBT CLEARING CLASSES
	3 RD	EXTRA CLASS
	1 ST	DOUBT CLEARING CLASSES
17 TH	2 ND	EXTRA CLASS
	3 RD	DOUBT CLEARING CLASSES
	1 ST	EXTRA CLASS
18 TH	2 ND	DOUBT CLEARING CLASSES
	3 RD	EXTRA CLASS

11/07/2025

Teaching Faculty

11/07/2025
HOD,EE

11/07/2025
Academic Coordinator

Discipline: ELECTRICAL ENGINEERING	Semester :3rd	Name of the Teaching Faculty: PRATIK DAS
Subject: ELECTRICAL CIRCUIT	No. of days/per week class allotted:03	Semester From date : <u>09.09.2025</u> To:- <u>15.11.2025</u>
Week	Class Day	Theory Topics
1 ST	1 st 2 nd 3 rd	Generation of alternating voltage, Phasor representation of sinusoidal quantities R, L, C circuit elements its voltage and current response Impedance, reactance, impedance triangle of R-L, R-C, R-L-C combination of A.C series circuit
2 ND	1 st 2 nd 3 rd	Power factor, active power, reactive power, apparent power of R-L, R-C, R-L-C combination of A.C series circuit Power triangle ,vector diagram of R-L, R-C, R-L-C combination of A.C series circuit Resonance of R-L, R-C, R-L-C combination of A.C series circuit
3 RD	1 st 2 nd 3 rd	Bandwidth, Quality factor and voltage magnification in series R-L, R-C, R-L-C circuit Impedance, reactance, Phasor diagram, impedance triangle of R-L, R-C and R-L-C parallel combination of A.C. circuits Power factor, active power, apparent power, reactive power, power triangle of R-L, R-C and R-L-C parallel combination of A.C. circuits
4 TH	1 st 2 nd 3 rd	Resonance in parallel R-L, R-C, R-L-C circuit Bandwidth, Quality factor and voltage magnification in parallel R-L, R-C, R-L-C circuit Phasor and complex representation of three phase supply, Phase sequence and polarity
5 TH	1 st 2 nd 3 rd	Types of three-phase connections Phase and line quantities in three phase star and delta system Balanced and unbalanced load
6 TH	1 st 2 nd 3 rd	Neutral shift in unbalanced load Three phase power, active, reactive and apparent power in star and delta system Source transformation
7 TH	1 st 2 nd 3 rd	Star/delta and delta/star transformation Mesh Analysis Node Analysis
8 TH	1 st 2 nd 3 rd	Superposition theorem Thevenin's theorem Norton's theorem
9 TH	1 st 2 nd 3 rd	Maximum power transfer theorem Reciprocity Theorem Open Circuit Impedance Parameters
10 TH	1 st 2 nd 3 rd	Short Circuit Admittance Parameters, Transmission Parameters, Hybrid Parameters Interrelationship of Two Port Network Inter Connection of Two Port Network

09.09.25
Teaching Faculty

09.09.25
HOD, EE

09.09.2025
Academic Coordinator

Discipline:ELECTRICAL ENGINEERING	Semester :3rd	Name of the Teaching Faculty: BISWANATH PRATAP SINGH
Subject: ELECTRICAL& ELECTRONICS MEASURENT	No. of days/per week class allotted:03	Semester From date : <u>14.07.2025</u> To:- <u>15.11.2025</u> No. of weeks:18
Week	Class Day	Theory Topics
1 ST	1 ST	Fundamentals of Measurements
	2 ND	Measurement: Significance, units, fundamental quantities and standards
	3 RD	Classification of Instrument System
2 ND	1 ST	Null and deflection type instruments
	2 ND	Absolute and secondary instruments
	3 RD	Analog and digital instruments
3 RD	1 ST	Static and dynamic characteristics, types of errors
	2 ND	Calibration: need and procedure
	3 RD	Classification of measuring instruments: indicating, recording and integrating instruments
4 TH	1 ST	Essential requirements of an indicating instruments
	2 ND	Classification of measuring instruments: indicating, recording and integrating instruments
	3 RD	Measurement of voltage and current
5 TH	1 ST	DC Ammeter: Basic, Multi range, Universal shunt
	2 ND	DC Voltmeter: Basic, Multi-range, concept of loading effect and sensitivity
	3 RD	AC voltmeter: Rectifier type (half wave and full wave)
6 TH	1 ST	CT and PT: construction, working and applications
	2 ND	Measurement of Electric Power
	3 RD	Analog meters: Permanent magnet moving coil (PMMC) and Permanent magnet moving iron (PMMI) meter, their construction, working, salient features, merits and demerits
7 TH	1 ST	Dynamometer type wattmeter: Construction and working
	2 ND	Errors and compensations of PMMI,PMMC and Dynamometer type wattmeter
	3 RD	Active and reactive power measurement: One, two and three wattmeter method
8 TH	1 ST	Effect of Power factor on wattmeter reading in two wattmeter

		method
	2 ND	Maximum Demand indicator(Definition only)
	3 RD	Measurement of Electric Energy
9 TH	1 ST	Single and three phase electronic energy meter: Constructional features and working principle
	2 ND	Errors and their compensations
	3 RD	Calibration of single-phase electronic energy meter using direct loading
10 TH	1 ST	Circuit Parameter Measurement, CRO and Other Meters
	2 ND	Measurement of resistance
	3 RD	Low resistance: Kelvin's double bridge,
11 TH	1 ST	Medium Resistance: Voltmeter and ammeter method
	2 ND	High resistance: Megger and Ohm meter: Series and shunt
	3 RD	Measurement of inductance using Anderson bridge (no derivation and phasor diagram)
12 TH	1 ST	Measurement of capacitance using Schering bridge (no derivation and phasor diagram)
	2 ND	Single beam/single trace CRO (Working principle and block diagram only)
	3 RD	Digital storage Oscilloscope: Basic block diagram, working, Cathode ray tube, electrostatic deflection, vertical amplifier, time base generator, horizontal amplifier, measurement of voltage/ amplitude/ time period/ frequency/ phase angle delay line, specifications.
13 TH	1 ST	Other meters: Earth tester, Digital Multimeter; L-C-R meter, Frequency meter (ferromagnetic and Weston type), Phase sequence indicator, power factor meter (single phase and three phase dynamometer type), Synchro scope, Tri-vector meter
	2 ND	Signal generator: need, working and basic block diagram.
	3 RD	Other meters: Earth tester, Digital Multimeter; L-C-R meter, Frequency meter (ferromagnetic and Weston type), Phase sequence indicator, power factor meter (single phase and three phase dynamometer type), Synchro scope, Tri-vector meter
14 TH	1 ST	Digital storage Oscilloscope: Basic block diagram, working, Cathode ray tube, electrostatic deflection, vertical amplifier, time base generator, horizontal amplifier, measurement of voltage/ amplitude/ time period/ frequency/ phase angle delay line, specifications
	2 ND	Analog meters: Permanent magnet moving coil (PMMC) and Permanent magnet moving iron (PMMI) meter, their construction, working, salient features, merits and demerits
	3 RD	Classification of measuring instruments: indicating, recording and integrating instruments
15 TH	1 ST	Effect of Power factor on wattmeter reading in two wattmeter
	2 ND	EXTRA CLASS
	3 RD	DOUBT CLEARING CLASSES
16 TH	1 ST	EXTRA CLASS

	2 ND	DOUBT CLEARING CLASSES
	3 RD	EXTRA CLASS
17 TH	1 ST	DOUBT CLEARING CLASSES
	2 ND	EXTRA CLASS
	3 RD	DOUBT CLEARING CLASSES
18 TH	1 ST	EXTRA CLASS
	2 ND	DOUBT CLEARING CLASSES
	3 RD	EXTRA CLASS

12/11/2023

Teaching Faculty

~~Dr. G. M.~~
HOD, EE
11/07/25

~~A. J.~~
11/07/2023
Academic Coordinator

Discipline:ELECTRICAL ENGINEERING	Semester :3rd	Name of the Teaching Faculty: PRABHAT RASHMI MALLIK
Subject: DC MACHINES AND TRANSFORMERS	No. of days/per week class allotted:03	Semester From date : <u>14.07.2025</u> To:- <u>15.11.2025</u> No. of weeks:18
Week	Class Day	Theory Topics
1 ST	1 ST	1.DC GENERATOR 1.1 D.C. generator: construction, parts, materials and their functions
	2 ND	1.1 D.C. generator: construction, parts, materials and their functions
	3 RD	1.2 Principle of operation of DC generator
2 ND	1 ST	1.2.1 Fleming's right hand rule
	2 ND	1.2.2 Derive the emf equation of DC Generator
	3 RD	1.2.3 Schematic diagrams of different types of DC generator
3 RD	1 ST	1.2.4 Armature reaction
	2 ND	1.2.5 Commutation
	3 RD	1.2.6 Applications of D.C. generators
4 TH	1 ST	2.D.C. motor 2.1 D.C. motor: Types of DC motors
	2 ND	2.1.1 Fleming's left hand rule
	3 RD	2.1.2 Principle of operation of Back e.m.f. and its significance
5 TH	1 ST	2.1.3 Voltage equation of DC motor
	2 ND	2.1.4 Torque and Speed; Armature torque, Shaft torque, BHP, Brake test, losses, efficiency
	3 RD	2.1.4 Torque and Speed; Armature torque, Shaft torque, BHP, Brake test, losses, efficiency
6 TH	1 ST	2.2 DC motor starters: Necessity, two point and three point starters
	2 ND	2.3 Speed control of DC shunt and series motor: Flux and Armature control
	3 RD	2.4 Brushless DC Motor: Construction and working
7 TH	1 ST	3. SINGLE PHASE TRANSFORMERS 3.1 Types of transformers: Shell type and core type
	2 ND	3.2 Construction: Parts and functions
	3 RD	3.3 Materials used for different parts: CRGO, CRNGO, HRGO, amorphous cores
8 TH	1 ST	3.4 Transformer: Principle of operation
	2 ND	3.5 EMF equation of transformer: Derivation, Voltage transformation ratio
	3 RD	3.6 Significance of transformer ratings
9 TH	1 ST	3.7 Transformer No-load and on-load phasor diagram, Leakage

		reactance
	2 ND	3.8 Equivalent circuit of transformer: Equivalent resistance and reactance
	3 RD	3.9 Voltage regulation and Efficiency: Direct loading, OC/SC method, All day efficiency
10 TH	1 ST	3.9 Voltage regulation and Efficiency: Direct loading, OC/SC method, All day efficiency
	2 ND	4.THREE PHASE TRANSFORMERS
	3 RD	4.1 Bank of three single phase transformers,(Y-Y,Δ-Δ ,Δ-Y, Y- Δ)
11 TH	1 ST	4.2 Single unit of three phase transformer
	2 ND	4.3 Distribution and Power transformers: Construction and cooling
	3 RD	4.4 Criteria for selection of distribution transformer, and power transformer.
12 TH	1 ST	4.5 Need of parallel operation of three phase transformer
	2 ND	4.6 Conditions for parallel operation.
	3 RD	4.7 Polarity tests on mutually inductive coils and single phase transformers
13 TH	1 ST	4.8 Polarity test, Phasing out test on Three-phase transformer
	2 ND	5. SPECIAL PURPOSE TRANSFORMERS
	3 RD	5.1 Single phase and three phase autotransformers: Construction, working and applications.
14 TH	1 ST	5.1 Single phase and three phase autotransformers: Construction, working and applications.
	2 ND	5.1 Single phase and three phase autotransformers: Construction, working and applications.
	3 RD	5.2 Isolation transformer: Constructional Features and applications
15 TH	1 ST	5.2 Isolation transformer: Constructional Features and applications
	2 ND	5.2 Isolation transformer: Constructional Features and applications
	3 RD	5.2 Isolation transformer: Constructional Features and applications
16 TH	1 ST	EXTRA CLASSES
	2 ND	EXTRA CLASSES
	3 RD	EXTRA CLASSES
17 TH	1 ST	PROBLEM SOLVING CLASSES
	2 ND	PROBLEM SOLVING CLASSES
	3 RD	PROBLEM SOLVING CLASSES
18 TH	1 ST	DOUBT CLEARING CLASSES
	2 ND	DOUBT CLEARING CLASSES
	3 RD	DOUBT CLEARING CLASSES

Teaching Faculty

11/07/2025

HOD,EE
11/07/2025

11/07/2025
Academic Coordinator

Discipline: ELECTRICAL ENGINEERING	Semester :3rd	Name of the Teaching Faculty: BISWANATH PRATAP SINGH AND PRABHAT RASHMI MALLIK
Subject: RENEWABLE ENERGY POWER PLANTS	No. of days/per week class allotted:03	Semester From date : <u>14.07.2025</u> To:- <u>15.11.2025</u> No of Weeks-18
Week	Class Day	Theory Topics
1 ST	1 ST 2 ND 3 RD	Solar PV and Concentrated Solar Power Plants 1.1 Solar Map of India: Global solar power radiation, Solar PV
2 ND	1 ST 2 ND 3 RD	1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors 1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors 1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors
3 RD	1 ST 2 ND 3 RD	1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors 1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors 1.3 Solar Photovoltaic (PV) power plant: components layout, construction, working. Roof top solar PV power system
4 TH	1 ST 2 ND 3 RD	1.3 Solar Photovoltaic (PV) power plant: components layout, construction, working. Roof top solar PV power system 1.3 Solar Photovoltaic (PV) power plant: components layout, construction, working. Roof top solar PV power system 1.3 Solar Photovoltaic (PV) power plant: components layout, construction, working. Roof top solar PV power system
5 TH	1 ST 2 ND 3 RD	Large Wind Power Plants 2.1 Wind Map of India: Wind power density in watts per square meter Lift and drag principle; long path theory 2.1 Wind Map of India: Wind power density in watts per square meter Lift and drag principle; long path theory 2.1 Wind Map of India: Wind power density in watts per square meter Lift and drag principle; long path theory
6 TH	1 ST 2 ND 3 RD	2.2 Geared type wind power plants: components, layout and working. Direct drive type wind power plants: components, layout and working 2.2 Geared type wind power plants: components, layout and working. Direct drive type wind power plants: components, layout and working 2.2 Geared type wind power plants: components, layout and working. Direct drive type wind power plants: components, layout and working
7 TH	1 ST	2.3 Constant Speed Electric Generators: Squirrel Cage Induction

		Generators(SCIG)
	^{2ND}	2.3 Constant Speed Electric Generators: Squirrel Cage Induction Generators(SCIG)
	^{3RD}	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG), permanent magnet synchronous generator (PMSG).
^{8TH}	^{1ST}	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG), permanent magnet synchronous generator (PMSG).
	^{2ND}	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG), permanent magnet synchronous generator (PMSG).
	^{3RD}	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG), permanent magnet synchronous generator (PMSG).
^{9TH}	^{1ST}	Small Wind Turbines 3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind turbine: geared type, components and working
	^{2ND}	3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind turbine: geared type, components and working
	^{3RD}	3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind turbine: geared type, components and working
^{10TH}	^{1ST}	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields
	^{2ND}	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields
	^{3RD}	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields
^{11TH}	^{1ST}	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields
	^{2ND}	3.3 Electric generators used in small wind power plants
	^{3RD}	3.3 Electric generators used in small wind power plants
^{12TH}	^{1ST}	Biomass-based Power Plants 4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste
	^{2ND}	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste
	^{3RD}	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste
^{13TH}	^{1ST}	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, biodiesel gobar gas

	2 ND	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, biodiesel gobar gas
	3 RD	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, biodiesel gobar gas
	1 ST	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:
14 TH	2 ND	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:
	3 RD	4.4 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant
	1 ST	4.4 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant
15 TH	2 ND	4.5 Layout of a Agro-chemical based (e.g. bio-diesel) power plant
	3 RD	4.5 Layout of a Agro-chemical based (e.g. bio-diesel) power plant
	1 ST	EXTRA CLASSES
16 TH	2 ND	EXTRA CLASSES
	3 RD	EXTRA CLASSES
	1 ST	EXTRA CLASSES
17 TH	2 ND	DOUBT CLEARING CLASSES
	3 RD	DOUBT CLEARING CLASSES
	1 ST	DOUBT CLEARING CLASSES
18 TH	2 ND	DOUBT CLEARING CLASSES
	3 RD	DOUBT CLEARING CLASSES

Teaching Faculty

P.D.
09.09.25

HOD, EE

Academic Coordinator