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Introduction



However a temperature difference exists within a system or when two systems at different temperatures
are brought into contact, energy is transferred. The process by which the energy transport takes place is
known as heat transfer. Heat cannot be measured or observed directly, but the effect it produces is
amenable to observation and measurement.
Difference between heat and temperature

In describing heat transfer problems, we often make the mistake of interchangeably using the terms heat
and temperature. Actually, there is a distinct difference between the two. Temperature is a measure of the
amount of energy possessed by the molecules of a substance. It is a relative measure of how hot or cold a
substance is and can be used to predict the direction of heat transfer. The usual symbol for temperature is
T. The scales for measuring temperature in SI units are the Celsius and Kelvin temperature scales. On the
other hand, heat is energy in transit. The transfer of energy as heat occurs at the molecular level as a result
of a temperature difference. The usual symbol for heat is Q. Common units for measuring heat are the
Joule and calorie in the SI system.

Difference between thermodynamics and heat transfer

Thermodynamics tells us:

* How much heat is transferred (6Q)

« How much work is done (6W)

« Final state of the system

Heat transfer tells us:

» How (with what modes) 8Q is transferred
« At what rate 5Q is transferred

 Temperature distribution inside the body

Modes of heat transfer
Conduction :Heat conduction is a mechanism of heat transfer from a region of high temperature to a
region of low temperature within a medium or between different medium in direct physical contact.

Examples: Heating a Rod.



Convection:It is a process of heat transfer that will occur between a solid surface and a fluid medium
when they are at different temperatures. It is possible only in the presence of fluid medium.
Example: Cooling of Hot Plate by air

Radiation: The heat transfer from one body to another without any transmitting medium. It isan
electromagnetic wave phenomenon.
Example: Radiation sun to earth.
Basic laws of heat transfer governing conduction
Basic law of governing conduction:This law is also known as Fourier’s law of conduction.

The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and

to the temperature gradient in that direction
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K-Thermal conductivity, W/mk

Basic law of governing convection: Thislaw is also known as Newton’s law of convection.
An energy transfer across a system boundary due to a temperature difference by the combined mechanisms

of intermolecular interactions and bulk transport. Convection needs fluid matter.
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Newton’s Law of Cooling:
q = hAsAT
Where:
g = heat flow from surface, a scalar, (W)
h = heat transfer coefficient (which is not a thermodynamic property ofthe material, but may depend on
geometry of surface, flowcharacteristics, thermodynamic properties of the fluid, etc. (W/m? K)
As = Surface area from which convection is occurring. (m?)

AT = Ts — T« = Temperature Difference between surface and coolant. (K)

Basic law of governing radiation: This law is also known as SteffanBoltzman law.
According to the SteffanBoltzman law the radiation energy emitted by a body is proportional to the

fourth power of its absolute temperature and its surface area.

q= SO'A(T54 - Tsur4)

Where:

¢ = Surface Emissivity

o = Steffan Boltzman constant

A= Surface Area

Ts = Absolute temperature of surface. (K)

Tsur = Absolute temperature of surroundings. (K)



Thermal conductivity: Thermal conductivity is a thermodynamic property of a material “the amount of energy
conducted through a body of unit area and unit thickness in unit time when the difference in temperature
between faces causing heat flow is unit temperature difference”.

Derivation of general three dimensional conduction equation in Cartesian coordinate
Consider a small rectangular element of sides dx, dy and dz as shown in figure.The energy balance of this
rectangular element is obtained from first law of thermodynamics
Consider the differential control element shown below. Heat is assumed to flow through the element in the
positive directions as shown by the 6 heat vectors.
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In the equation above we substitute the 6 heat inflows/outflows using the appropriate sign:
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where § 1s defined as the internal heat generation per unit volume.
The above equation reduces to:
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Discussion on 3-D conduction in cylindrical and spherical coordinate systems
Cylindrical coordinate system:
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The 3-Dimensional conduction equation in cylindrical co-ordinates is given by,
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In each equation the dependent variable, T, is a function of 4 independent variables, (x,y,z,7);(r,0,2,7);
(1,0,0,7) and is a 2nd order, partial differential equation. The solution of suchequations will normally require a
numerical solution. For the present, we shall simply look atthe simplifications that can be made to the equations
to describe specific problems.

e Steady State: Steady state solutions imply that the system conditions are not changing with time.
Thus 0T / 6t = 0.



e One dimensional: If heat is flowing in only one coordinate direction, then it follows that there is
notemperature gradient in the other two directions. Thus the two partials associated with these
directionsare equal to zero.

e Two dimensional: If heat is flowing in only two coordinate directions, then it follows that there is
notemperature gradient in the third direction. Thus the partial derivative associated with this third
directionis equal to zero.

e No Sources: If there are no heat sources within the system then the term, g=0.

Note that the equation is 2nd Order in each coordinate direction so that integration will resultin 2 constants of
integration. To evaluate these constants two additional equations must bewritten for each coordinate direction based
on the physical conditions of the problem. Suchequations are termed “boundary conditions’.

Boundary and Initial Conditions:

e The objective of deriving the heat diffusion equation is to determine the temperature distribution
within the conducting body.

e We have set up a differential equation, with T as the dependent variable. The solution will give
us T(X,y,z). Solution depends on boundary conditions (BC) and initial conditions (IC).

e How many BC’s and IC’s?

= Heat equation is second order in spatial coordinate. Hence, 2 BC’s needed for each
coordinate.
o 1D problem: 2 BC in x-direction
o 2D problem: 2 BC in x-direction, 2 in y-direction
o 3D problem: 2 in x-dir., 2 in y-dir., and 2 in z-dir.
= Heat equation is first order in time. Hence one IC needed.



Heat Diffusion Equation for a One Dimensional System:
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Consider the system shown above. The top, bottom, front and back of the cube are insulated, so that heat
canbe conducted through the cube only in the x direction. The internal heat generation per unit volume is
q&(W/m3).

Consider the heat flow through an arbitrary differential element of the cube.
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From the 1% Law we write for the element:
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The differential equation governing heat diffusion 1s: di( kd—T] =0
»

With constant k, the above equation may be integrated twice to obtain the general solution:
T(x)=Cx+C,

where C; and C; are constants of integration. To obtain the constants of mntegration. we apply
the boundary conditions at x = 0 and x = L, n which case

T(0)=T,, and T(L)=T,,
Once the constants of integration are substituted mnto the general equation, the temperature
distribution 1s obtained:

I(x)=(T,, _L,l)%+ T,

The heat flow rate across the wall is given by:
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Thermal resistance (electrical analogy):
Physical systems are said to be analogous if that obey the same mathematical equation. The above

relations can be put into the form of Ohm’s law:
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Using this terminology it is common to speak of a thermal resistance:

AT = qRtherm
Riherm
T1 T2
—_—
o T1=T2

A thermal resistance may also be associated with heat transfer by convection at a surface. From
Newton’s law of cooling,

q=hA(Ts —T.)
The thermal resistance for convection is then
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Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for the plane

wall with convection boundary conditions is shown in the figure below
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The heat transfer rate may be determined from separate consideration of each element in the
network. Since g, 1s constant throughout the network, 1t follows that
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In terms of the overall temperature difference 7_, — T, ,, and the total thermal resistance R,

the heat transfer rate may also be expressed as

Tw,l - Tm.l
="
Rroz
Since the resistance are in series. it follows that
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Composite walls:
Thermal Resistances in Series:
Consider three blocks, A, B and C, as shown. They are insulated on top, bottom, front and back. Since the

energy will flow first through block A and then through blocks B and C, we say that these blocks are

thermally in a series arrangement.
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The steady state heat flow rate through the walls is given by:
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where U = 1s the overall heat transfer coefficient. In the above case, U 1s expressed as
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The following assumptions are made with regard to the above thermal resistance model:
1) Face between B and C is insulated.
2) Uniform temperature at any face normal to X.

1-D radial conduction through a cylinder:
One frequently encountered problem is that of heat flow through the walls of a pipe or through the
insulation placed around a pipe. Consider the cylinder shown. The pipe is either insulated on the ends or
is of sufficient length, L, that heat losses through the ends are negligible. Assume no heat sources within
the wall of the tube. If T1>T2, heat will flow outward, radially, from the inside radius, R1, to the outside

radius, R2. The process will be described by the Fourier Law.

The differential equation governing heat diffusion 1s: ldil F ar l =0
rdr\ )

dr
With constant k_the solution 1s

The heat flow rate across the wall 1s given by:
dT kA
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Hence, the thermal resistance i this case can be expressed as:




Composite cylindrical walls:
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Critical Insulation Thickness:
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Insulation thickness : 7,-7;

Obijective: decrease q,increaseRotal
Vary ro; as ro increases, first term increases, second term decreases.

This is a maximum — minimum problem. The point of extreme can be found by setting
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In order to determune if 1t 15 a maxima or a mimima, we make the second derivative zero:
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radial conduction in a sphere:




Summary of Electrical Analogy:
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UNIT - 2 Fins & transient conduction

FINS: EXTENDED SURFACES

Heat transfer in extended surfaces of uniform cross-section without heat generation:
Convection: Heat transfer between a solid surface and a moving fluid is governed by the Newton’s cooling
law: g = hA(Ts-Too), where Tsis the surface temperature and Too is the fluid temperature. Therefore, to
increase the convective heat transfer, one can
* Increase the temperature difference (Ts-Too) between the surface and the fluid.
« Increase the convection coefficient h. This can be accomplished by increasing the fluid flow over
the surface since h is a function of the flow velocity and the higher the velocity, the higher the h.
Example: a cooling fan.
« Increase the contact surface area A. Example: a heat sink with fins.
Many times, when the first option is not in our control and the second option (i.e. increasing h) is already

stretched to its limit, we are left with the only alternative of increasing the effective surface area by using



fins or extended surfaces. Fins are protrusions from the base surface into the cooling fluid, so that the extra
surface of the protrusions is also in contact with the fluid. Most of you have encountered cooling fins on air-
cooled engines (motorcycles, portable generators, etc.), electronic equipment (CPUs), automobile radiators,

air conditioning equipment (condensers) and elsewhere.

gﬂ-- —> = I—’ Ac
y ‘ 1 ] [ 1

- L e —_—

The fin is situated on the surface of a hot surface at Ts and surrounded by a coolant at temperature Too,
which cools with convective coefficient, h. The fin has a cross sectional area, Ac, (This is the area through with
heat is conducted.) and an overall length, L.

Note that as energy is conducted down the length of the fin, some portion is lost, by convection, from the sides.
Thus the heat flow varies along the length of the fin.

We further note that the arrows indicating the direction of heat flow point in both the x and y directions. This is
an indication that this is truly a two- or three-dimensional heat flow, depending on the geometry of the fin.
However, quite often, it is convenient to analyse a fin by examining an equivalent one—dimensional system. The
equivalent system will involve the introduction of heat sinks (negative heat sources), which remove an amount of
energy

Equivalent to what would be lost through the sides by convection.



Across this segment the heat loss will be h- (P- Ax)- (T-T«), where P is the perimeter around thefin. The equivalent
heat sink would be &q&&(A x)

Equating the heat source to the convective loss:

~h-P(T-T)
A

G-

Substitute this value into the General Conduction Equation as simplified for One-Dimension, Steady State
Conduction with Sources:

which is the equation for a fin with a constant cross sectional area. This is the Second Order Differential Equation
that we will solve for each fin analysis. Prior to solving, a couple of simplifications should be noted. First, we
seethat h, P, k and Ac are all independent of x in the defined system (They may not be constant if a more general
analysis is desired.). We replace this ratio with a constant. Let

, h-P
m = kA
T i (T-7)=0
—-m - \T-T |=
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Next we notice that the equation is non-homogeneous (due to the Too term). Recall that non homogeneous
differential equations require both a general and a particular solution. We can make this equation homogeneous

by introducing the temperature relative to the surroundings:

B=T-Tx
Differentiating this equation we find:
dé_dr
dx  dx
Differentiate a second time:
d'é d'T
dy*  dx?

Substitute into the Fin Equation:



d‘ R
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This equation is a Second Order, Homogeneous Differential Equation.

Solution of the Fin Equation:
We apply a standard technique for solving a second order homogeneous linear differential equation.

Try 6 = ™ Differentiate this expression twice:

dﬂ X
dx - %€
ﬂ::g g X
— = -e
dx”

Substitute this trial solution into the differential equation:

2 X 2 .
o e™ —me" =0

Equation (13) provides the following relation:

o=+ m

We now have two solutions to the equation. The general solution to the above differential equation will be a
linear combination of each of the independent solutions

Then:

0=A-em-x+ B-e-m-Xx.

where A and B are arbitrary constants which need to be determined from the boundary conditions. Note that it is
a 2nd order differential equation, and hence we need two boundary conditions to determine the two constants of
integration.

An alternative solution can be obtained as follows: Note that the hyperbolic sin, sinh, the hyperbolic cosine, cosh,

are defined as:
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sih(m- x) = s = cosh(m-x) =

2

We may write:

e +e
C-cosh(m-x)+ D-smh(m-x) = C- +D. =———. " +——.e

We see that 1f (C+D)/2 replaces A and (C-D)/2 replaces B then the two solutions are
equivalent.

@ = C-cosh(m-x)+ D-smh(m- x)

Generally the exponential solution is used for very long fins, the hyperbolic solutions for other cases.
Boundary Conditions:
Since the solution results in 2 constants of integration we require 2 boundary conditions. The first one is obvious,
as one end of the fin will be attached to a hot surface and will come into thermal equilibrium with that surface.
Hence, at the fin base,
B8 (0)=To-To=060
The second boundary condition depends on the condition imposed at the other end of the fin.
There are various possibilities, as described below.
Very long fins:
For very long fins, the end located a long distance from the heat source will approach the temperature of the
surroundings. Hence,
0 (0)=0

Substitute the second condition into the exponential solution of the fin equation:

v's ]
Blo)=0= A-Enf— B- 97‘

The first exponential term is infinite and the second is equal to zero. The only way that this equation can be valid is if
A = 0. Now apply the second boundary condition.
6(0)=6o0=Bemo=>B= 0o



8(0)= B;=B-e="=B=8,
The general temperature profile for a very long fin 1s then:

B(x)= Bp-e™*

If we wish to find the heat flow through the fin, we may apply Fourier Law:

dT de
:_kxd_:_k."i_
1 ©odx ©odx
Differentiate the temperature profile:
dﬁl —px
E: —-5'n -m-e
So that:
h-P 1 mx i o L 4 ™ mx
g=k-A -6,- 1 € =, h-Pk-A-e" -6, =M6e”

where M = wu'hPﬁ:.»if .

Often we wish to know the total heat flow through the fin, i.e. the heat flow entering at the base (x=0).

g: u‘lh'P.klA{IHﬂ =_IMSCI

The insulated tip fin:
Assume that the tip is insulated and hence there is no heat transfer:

L
The solution to the fin equation is known to be: dx|,;
Differentiate this expression. § = C-cosh(m-x)+ D-sinh(m- x)
de _
e C-m-smh(m-x)+ D-m-cosh(m- x)

Apply the first boundary condition at the base:

0 1
6(0) =4, = C‘smh(mfj/:—ﬂcnsh(m }){



So that D = 00. Now apply the second boundary condition at the tip to find the value of C:

ﬂ (L)=0=Cmsmh(m- L)+ &;m cosh(m - L)
This requires that dx
_ g cosh(mL)
’ sinh(mL)

We may find the heat flow at any value of x by differentiating the temperature profile and substituting it into the
Fourier Law:

dT dé
=-k A —=-kF 4 —
q ©odx ©odx

So that the energy flowing through the base of the fin is:

q = +/hPkA_6, tanh(mL) = MG, tanh(mL)

If we compare this result with that for the very long fin, we see that the primary difference in form is in the
hyperbolic tangent term. That term, which always results in a number equal to or less than one, represents the

reduced heat loss due to the shortening of the fin.

Case | Tip Condition Temp. Distribution Fin heat transfer
A Convection heat N ok - ! ~ J
coshm(L—x)+ (" smh (L — x smmhmL + (1 coshmL
transfer: ( ) (/’ 1k ) ( ) Mo, A? k )
h8(L)=-k(d6/dx )1 coshmL + (% : k) simnhmL coshmL + (% ; k) smhmL
B Adiabatic coshm(L —x) M@, tanhmL
(d6/dx)x=1 =0 coshmL
C Given temperature: (% )sinhm(L — x) +sinhm(L — x) (coshmL — % )
e(L)z eL b AMB 5
sinhmL ! sinhmL
D Infinitely long fin o= M 6,
8(L)=0




Fin Effectiveness:
How effective a fin can enhance heat transfer is characterized by the fin effectiveness, + £, which is as the ratio of

fin heat transfer and the heat transfer without the fin. For an adiabaticfin:

(hPkA. tanh(mL | kP
E,I" = q_f = q_f = L kA{ ( ) = | ta.tﬂl(ml.:l
qg  hd.(T,-T.) hA, \ e
If the fin is long enough, mL>2, tanh(mL)— 1, and hence it can be considered as infinite fin( case D in table)Hence,
for long fins,
(kP (k) P
sy [H2_ [EVE
Vhd, k) A,
Fin Efficiency:

The fin efficiency is defined as the ratio of the energy transferred through a real fin to thattransferred through an
ideal fin. An ideal fin is thought to be one made of a perfect or infiniteconductor material. A perfect conductor has

an infinite thermal conductivity so that theentire fin is at the base material temperature.

_ Grea _ x"lm'ﬁi -tanh(m- L)

X
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Real situation Ideal situation

_ Ifk-A{ g, - tanh(m- L) _ tanh(m- L)
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TRANSIENT CONDUCTION

Introduction:

To this point, we have considered conductive heat transfer problems in which the temperatures are

independent of time. In many applications, however, the temperatures are varying with time, and we

require the understanding of the complete time history of the temperature variation. For example, in

metallurgy, the heat treating process can be controlled to directly affect the characteristics of the processed

materials. Annealing (slow cool) can soften metals and improve ductility. On the other hand, quenching

(rapid cool) can harden the strain boundary and increase strength. In order to characterize this transient

behavior, the full unsteady equation is needed:

1 ¢ ¢'T ¢
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a or ox- oy
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Where a = __ s the thermal diffusivity without any heat generation and considering spatialvariation of

pCp



temperature only in x-direction, the above equation reduces to:

18r @&'r

a 8t &’
For the solution of equation (5.2), we need two boundary conditions in Xx-direction and one initial

condition. Boundary conditions, as the name implies, are frequently specified along the physical boundary
of an object; they can, however, also be internal — e.g. a known temperature gradient at an internal line of
symmetry.

Biot and Fourier numbers:
In some transient problems, the internal temperature gradients in the body may be quite small and
insignificant. Yet the temperature at a given location, or the average temperature of the object, may be
changing quite rapidly with time. From eq. (5.1) we can note that such could be the case for large thermal

diffusivity o .

h

For very large ri, the heat transfer rate by conduction through the cylinder wall isapproximately
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where [ 1s the length of the cylinder and L 1s the material thickness. The rate of heat transier
away from the outer surface by convection 1s

p
\

qg=hQm,I)T,-T,)

where % is the average heat transfer coefficient for convection from the entire surface
Equating (5.3) and (5.4) gives

y O :
S I—L= Biot number
oy T

x

The Biot number 1s dimensionless, and it can be thought of as the ratio

Bi— resistance to internal heat flow

resistance to external heat flow

Whenever the Biot number is small, the internal temperature gradients are also small and a transient
problem can be treated by the “lumped thermal capacity” approach. The lumped capacity assumption
implies that the object for analysis is considered to have a single mass averaged temperature.

In the derivation shown above, the significant object dimension was the conduction path lengthL =

ro— 1i. In general, a characteristic length scale may be obtained by dividing the volume of the solid by

its surface area:

Using this method to determine the characteristic length scale, the corresponding Biot number may be
evaluated for objects of any shape, for example a plate, a cylinder, or a sphere. As a thumb rule, if the
Biot number turns out to be less than 0.1, lumped capacity assumption is applied.

In this context, a dimensionless time, known as the Fourier number, can be obtained by multiplying the

dimensional time by the thermal diffusivity and dividing by the square of the characteristic length:



ot
—=Fo

dimensionless time =

Lumped thermal capacity analysis:

The simplest situation in an unsteady heat transfer process is to use the lumped capacityassumption, wherein
we neglect the temperature distribution inside the solid and only dealwith the heat transfer between the solid

and the ambient fluids. In other words, we areassuming that the temperature inside the solid is constant and is
equal to the surfacetemperature.

P g=hA(T-T,)
T,
—
)
h

The solid object shown in figure 5.2 is a metal piece which is being cooled in air after hot forming. Thermal
energy is leaving the object from all elements of the surface, and this is shown for simplicity by a single

arrow. The first law of thermodynamics applied to this problem is

"heat out of object |'“ decrease of internal thermal

G

_during time dr \ energy of object during time dr |
Now, if Biot number is small and temperature of the object can be considered to be uniform,this equation can
be written as

hA_[T(t)-T, Jdt = —pcvaT

dT hA
. - = — = dr
\I-T.) pcV

Integrating and applying the initial condition i T(0)= T,

WIO-T. b4

I-T, eV

Taking the exponents of both sides and rearranging,



T(t)-T.
O-T. _

where

(1/5)

Rate of convection heat transfer at any given time t:

o) = ;L{,[}(z) -T.]

Total amount of heat transfer between the body and the surrounding from t=0 to t:

0 =me [T()-T]
Maximum heat transfer (limit reached when body temperature equals that of the surrounding):

0 =mc [T, -T]

Use of Transient temperature charts (Heisler’s charts):

The Plane Wall:

In Sections 5.5 and 5.6, one-term approximations have been developed for transient,one-dimensional
conduction in a plane wall (with symmetrical convection conditions)and radial systems (long cylinder and
sphere). The results apply for Fo_ 0.2 and canconveniently be represented in graphical forms that illustrate
the functional dependenceof the transient temperature distribution on the Biot and Fourier numbers.
Results for the plane wall (Figure 5.6a) are presented in Figures 5S.1 through5S.3. Figure 5S.1 may be
used to obtain the midplanetemperature of the wall, T(0, t) _To(t), at any time during the transient process.
If To is known for particular values ofFoandBi, Figure 5S.2 may be used to determine the corresponding
temperature atany location off the midplane. Hence Figure 5S.2 must be used in conjunction withFigure
5S.1. For example, if one wishes to determine the surface temperature (x*_1) at some time t, Figure 5S.1
would first be used to determine Toat t. Figure 5S.2would then be used to determine the surface

temperature from knowledge of To. The
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UNIT — 3 Concepts and basic relations in boundary layers:

Introduction:

Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer
in convection is predominately due to the bulk motion of the fluid particles; through the molecular conduction
within the fluid itself also contributes to some extent. If this motion is mainly due to the density variations
associated with temperature gradients within the fluid, the mode of heat transfer is said to be due to free or natural
convection. On the other hand if this fluid motion is principally produced by some superimposed velocity field

like fan or blower, the energy transport is said to be due to forced convection.

Convection Boundary Layers:

Velocity Boundary Layer: Consider the flow of fluid over a flat plate as shown in the figure. The fluid
approaches the plate in x direction with uniform velocity uc. The fluid particles in the fluid layer adjacent to the
surface get zero velocity. This motionless layer acts to retract the motion of particles in the adjoining fluid layer
as a result of friction between the particles of these two adjoining fluid layers at two different velocities. This fluid
layer then acts to restart the motion of particles of next fluid layer and so on, until a distance y = from [llsurface

reaches, where these effects become negligible and the fluid velocity u reaches the free stream velocity uc. as a

result of frictional effects between the fluid layers, the local fluid velocity u will vary fromx=0,y=0toy =5 .

Outer flow (potential) region
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Velocity Boundary Layer on a Flat Plate

The region of the flow over the surface bounded byd in which the effects of viscous shearing forces caused by
fluid viscosity are observed, is called velocity boundary layer or hydro dynamic boundary layer. The thickness of
boundary layer 8is generally defined as a distance from the surface at which local velocity u = 0.99 of free stream
velocity u-. The retardation of fluid motion in the boundary layer is due to the shear stresses acting in opposite

direction with increasing the distance y from the surface shear stress decreases, the local velocity u increases until



approaches uoo. With increasing the distance from the leading edge, the effect of viscosity penetrates further into
the free stream and boundary layer thickness grows.

Thermal boundary Layer: If the fluid flowing on a surface has a different temperature than the surface,
the thermal boundary layer developed is similar to the velocity boundary layer. Consider a fluid at a temperature
Too flows over a surface at a constant temperature Ts. The fluid particles in adjacent layer to the plate get the same
temperature that of surface. The particles exchange heat energy with particles in adjoining fluid layers and so on.
As a result, the temperature gradients are developed in the fluid layers and a temperature profile is developed in

the fluid flow, which ranges from Ts at the surface to fluid temperature Too sufficiently far from the surface in y

direction.
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Development of Velocity Boundary Layer on a Flat Plate

The flow region over the surface in which the temperature variation in the direction, normal to surface is

at any location along
the length of flow is defined as a distance y from the surface at which the temperature difference (T-Ts) equal
0.99 of (T - Ts). With increasing the distance from leading edge the effect of heat transfer penetrates further into
the free stream and the thermal boundary layer grows as shown in the figure. The convection heat transfer rate
anywhere along the surface is directly related to the temperature gradient at that location. Therefore, the shape of
the temperature profile in the thermal boundary layer leads to the local convection heat transfer between surface

and flowing fluid.

Development of velocity boundary layer on a flat plate:

It is most essential to distinguish between laminar and turbulent boundary layers. Initially, the boundary
layer development is laminar as shown in figure for the flow over a flat plate. Depending upon the flow field and

fluid properties, at some critical distance from the leading edge small disturbances in the flow begin to get



amplified, a transition process takes place and the flow becomes turbulent. In laminar boundary layer, the fluid
motion is highly ordered whereas the motion in the turbulent boundary layer is highly irregular with the fluid
moving to and from in all directions. Due to fluid mixing resulting from these macroscopic motions, the turbulent

boundary layer is thicker and the velocity profile in turbulent boundary layer is flatter than that in laminar flow.

0=T,—-T
B0
Too, Uco Too Free stream
: region
= 0,4(x)

g3 Thermal boundary O(x 04 )
1 layer region 8,
) T(x.y)

TTTEOE TR TR CRTERNTTURRNNAANNAA CEETEE RO ERRNRNSEANANAAA
->X le—T ——J =

Thermal Boundary Layer on a Flat Plate

The critical distance xcbeyond which the flow cannot retain its laminar character is usually specified in
term of critical Reynolds number Re. Depending upon surface and turbulence level of free stream the critical
Reynolds number varies between 10° and 3 X 108. In the turbulent boundary layer, as seen three distinct regimes
exist. A laminar sub-layer, existing next to the wall, has a nearly linear velocity profile. The convective transport
in this layer is mainly molecular. In the buffer layer adjacent to the sub-layer, the turbulent mixing and diffusion
effects are comparable. Then there is the turbulent core with large scale turbulence.

Application of dimensional analysis for free convection:

Dimensional analysis is a mathematical method which makes use of the study of the dimensions for
solving several engineering problems. This method can be applied to all types of fluid resistances, heat flow
problems in fluid mechanics and thermodynamics.

Let us assume that heat transfer coefficient ‘h’ in fully developed forced convection in tube is function of
following variables;

h=f(D, V,k, p, 1, cp,)OF ==---z-nnnnnnv (1)
fi(h, D,V, p, k, 4, Cp)------------ (2)



Nusselt Number (Nu).

It is defined as the ratio of the heat flow by convection process under a unit temperature gradient to the heat
flow rate by conduction under a unit temperature gradient through a stationary thickness (L).

qCOTL
Nusselt Number(Nu) = ______

Grashof number (Gr).
It is defined as the ratio of product of inertia force and buoyancy force to the square of viscous force.

Inertia force X Buoyancy force

Grashof number (Gr) = Viscus force?

Prandtl number (Pr).

It is the ratio of the momentum diffusivity to the thermal diffusivity.

Momentum dif fusivit
Thermal dif fusivit

Prandtlnumber (Pr) =



FORCED CONVECTION

Applications of dimensional analysis for forced convection:

Dimensional analysis is a mathematical method which makes use of the study of the dimensions for solving
several engineering problems. This method can be applied to all types of fluid resistances, heat flow problems in
fluid mechanics and thermodynamics.

Let us assume that heat transfer coefficient ‘h’ in fully developed forced convection in tube is function of
following variables;
h=f(D, V,k, p, i, cp) or

fi(h,D,V,p, k, y, cp)

Sr. No. | Variables Symbols Dimensions
01 Heat transfer coefficient h MT> 6"

02 Fluid density p ML™

03 Tube diameter D L

04 Fluid velocity V LT

05 Fluid viscosity U ML T?

06 Specific heat Cp LT 6"

07 Thermal conductivity k MLT" 6

Total no. of variables = n=7

Fundamental dimensions in problem=m=4 (M, L, T, 0)
No. of dimensionless n-Term=n-m = 3

Equation (2) can be written as;

fl(nl,72,m3)=0

Choosing h, D, V, p as group of repeating variables with unknown exponents.



Therefore,

1 = hal, pbl, Pl Y1y
2 = he2, pb2, De2 Vdz Cp

13 = ha3, pb3, De3, Vd3 K
al-Term:
MLT-1= (ML-30-1)t, (ML-3)b1, (L)1, (LT-1)%, (ML-1T-1)
Equating exponents of M, L, T,0 respectively, we get;
al=0,bl=-1,cl=-1,d1=-1

m1 = hal, pbl Del ydi gy

U

M= DbV

Similarly for n2 and 3 Term
m2-Term:
mz=h"1p.V.Cpr

p.V.Cp

2 =

Since dimensions of h and k/D are same;

m2=p.V.Cp.D/p

mi=h1.D1K
=D

According to © theorem:mrs = @(m1, 72)



K = constant(_ * ym'(p.y.C D, Y
h.D D.V.p FK

where m’ and n’ are constants.

If m’ > n’, then

’ H
_K = constant( K »(p.V.C -D/ " ( )m'—n'
h.D D.V.p P K D.V.p
K m'—n' ,
— = constant( K ) - CP)"
h.D D.V.p K
OR
D D.V. .C
= constant( '0) m(ll P)"
U K
OR

Nu = constant(Re)™(Pr)"

Nusselt Number (Nu).

It is defined as the ratio of the heat flow by convection process under a unit temperature gradient to the heat

flow rate by conduction under a unit temperature gradient through a stationary thickness (L).

qcon
Nusselt Number(Nu) = _____
4dcond
Reynolds number (Re).
It is defined as the ratio of inertia force to viscous force.
Inertia force
Reynolds number(Re) = ————
Viscusforce

Prandtl number (Pr).

It is the ratio of the momentum diffusivity to the thermal diffusivity.



Momentum dif fusivit

Prandtinumber (PT) = “Tpormq dif fusivit



HEAT EXCHANGERS

The device used for exchange of heat between the two fluids that are at different temperatures, is called
the heat exchanger. The heat exchangers are commonly used in wide range of applications, for example, in a car
as radiator, where hot water from the engine is cooled by atmospheric air. In a refrigerator, the hot refrigerant
from the compressor is cooled by natural convection into atmosphere by passing it through finned tubes. In a
steam condenser, the latent heat of condensation is removed by circulating water through the tubes. The heat
exchangers are also used in space heating and air-conditioning, waste heat recovery and chemical processing.
Therefore, the different types of heat exchangers are needed for different applications.

The heat transfer in a heat exchanger usually involves convection on each side of fluids and conduction
through the wall separating the two fluids. Thus for analysis of a heat exchanger, it is very convenient to work
with an overall heat transfer coefficientU, that accounts for the contribution of all these effects on heat transfer.
The rate of heat transfer between two fluids at any location in a heat exchanger depends on the magnitude of
temperature difference at that location and this temperature difference varies along the length of heat exchanger.
Therefore, it is also convenient to work with logarithmic meantemperature difference LMTD,which is an

equivalent temperature difference betweentwo fluids for entire length of heat exchanger.

Classification of heat exchangers:

Heat exchangers are designed in so many sizes, types, configurations and flow arrangements and used for
so many purposes. These are classified according to heat transfer process, flow arrangement and type of

construction.

According to Heat Transfer Process:
0) Direct contact type.In this type of heat exchanger, the two immiscible fluids atdifferent temperatures
are come in direct contact. For the heat exchange between two fluids, one fluid is sprayed through the
other. Cooling towers, jet condensers, desuperheaters, open feed water heaters and -scrubbers are the

best examples of such heat exchangers. It cannot be used for transferring heat



between two gases or between two miscible liquids. A direct contact type heat exchanger (cooling

tower) is shown in Figure 6.1.
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Figure 6.1: direct contact type heat exchanger (cooling tower)

(i) Transfer type heat exchangers or recuperators:

(i)

In this type of heat exchanger, the cold and hot fluids flow simultaneously through the device and the heat is
transferred through the wall separating them. These types of heat exchangers are most commonly used in
almost all fields of engineering.

Regenerators or storage type heat exchangers.

In these types of heat exchangers,the hot and cold fluids flow alternatively on the same surface. When hot
fluid flows in an interval of time, it gives its heat to the surface, which stores it in the form of an increase in
its internal energy. This stored energy is transferred to cold fluid as it flows over the surface in next interval
of time. Thus the same surface is subjected to periodic heating and cooling. In many applications, a rotating
disc type matrix is used, the continuous flow of both the hot and cold fluids are maintained. These are
preheaters for steam power plants, blast furnaces, oxygen producers etc. A stationary and rotating matrix
shown in Figure 6.2 are examples of storage type of heat exchangers.

The storage type of heat exchangers is more compact than the transfer type of heat exchangers with more

surface area per unit volume. However, some mixing of hot and cold fluids is always there.



Rotating matrix

Hot fluid in Cold fluid in

Rotating matrix
(cold period)

(a) Single matrix regenerator (b) Rotary regenerator

Figure 6.2: Storage type heat exchangers
According to Constructional Features:
(1) Tubular heat exchanger.These are also called tube in tube or concentric tube or double pipe heat
exchanger as shown in Figure 6.3. These are widely used in many sizes anddifferent flow

arrangements and type.

Fluid B
B B L e A e NN A AN AN A o ]
Fluid A Fluid A
(parallel ==~ 7 = = (Counter-
flow case) flow case)

Fluid B

Figure 6.3: Tubular heat exchanger

(i) Shell and tube type heat exchanger.

These are also called surface condensers andare most commonly used for heating, cooling, condensation or
evaporation applications. It consists of a shell and a large number of parallel tubes housing in it. The heat transfer
takes place as one fluid flows through the tubes and other fluid flows outside the tubes through the shell. The
baffles are commonly used on the shell to create turbulence and to keep the uniform spacing between the tubes

and thus to enhance the heat transfer rate. They are having large surface area in small volume. A



typical shell and tube type heat exchanger is shown in Figure 6.4.The shell and tube type heat exchangers are
further classified according to number of shell and tube passes involved. A heat exchanger with all tubes make
one U turn in a shell is called one shell pass and two tube pass heat exchanger. Similarly, a heat exchanger that

involves two passes in the shell and four passes in the tubes is called a two shell pass andfour tube pass heat
exchanger as shown in Figure 6.5.

TUt}G Shell
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Figure 6.4: Shell and tube type heat exchanger: one shell and one tube pass
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Figure 6.5: Multipass flow arrangement in shell and tube type heat exchanger



(i) Finned tube type. When a high operating pressure or an enhanced heat transfer rateis required, the extended
surfaces are used on one side of the heat exchanger. These heat exchangers are used for liquid to gas heat
exchange. Fins are always added on gas side. The finned tubes are used in gas turbines, automobiles, aero planes,
heat pumps, refrigeration, electronics, cryogenics, air-conditioning systems etc. The radiator of an automobile is
an example of such heat exchanger.

(iv) Compact heat exchanger. These are special class of heat exchangers in which theheat transfer surface area
per unit volume is very large. The ratio of heat transfer surface area to the volume is called area density. A heat
exchanger with an area density greater than 700 m?/m? is called compact heat exchanger. The compact heat
exchangers are usually cross flow, in which the two fluids usually flow perpendicular to each other. These heat
exchangers have dense arrays of finned tubes or plates, where at least one of the fluid used is gas. For example,
automobile radiators have an area density in order of 1100 m?/m?,

According to Flow Arrangement:

(i) Parallel flow: The hot and cold fluids enter at same end of the heat exchanger, flowthrough in same direction
and leave at other end. It is also called the concurrent heatexchanger Figure 6.6.

(if) Counter flow: The hot and cold fluids enter at the opposite ends of heat exchangers, flow through in opposite

direction and leave at opposite ends Figure 6.6.

Cold out

Cold in Cold out
{a) Paraliel flow (b) Counterflow heat exchanger
Figure 6.6: Concentric tube heat exchanger
(ili) Cross flow:The two fluids flow at right angle to each other. The cross flow heatexchanger is further classified
as unmixed flow and mixed flow depending on the flow configuration. If both the fluids flow through individual
channels and are not free to move in transverse direction, the arrangement is called unmixed as shown in Figure
6.7a. If any fluid flows on the surface and free to move in transverse direction, then this fluid stream is said to be

mixed as shown in Figure 6.7D.



X Tube flow

Tube-flow (unmixed)
(unmixed)
(a) Both fluid unmixed (b) One fluid mixed and one fluid unmixed

Figure 6.7: Different flow configurations in cross-flow heat exchangers.

Fouling factor:

Material deposits on the surfaces of the heat exchangertube may add further resistance to heat transfer in additionto
those listed below. Such deposits are termed foulingand may significantly affect heat exchanger performance.
We know, the surfaces of heat exchangers do not remain clean after it has been in use for some time. The
surfaces become fouled with scaling or deposits. The effect of these deposits affecting the value of overall heat
transfer co-efficient. This effect is taken care of by introducing an additional thermal resistance called the fouling
resistance.
e Scaling is the most common form of fouling and is associated with inverse solubility salts.
Examples of such salts are CaCO3, CaS04, Ca3(P04)2, CaSiO3, Ca(OH)2, Mg(OH)2,
MgSiO3, Na2S04, LiSO4, andLi2CO3.
e Corrosion fouling is classified as a chemical reaction which involves the heat exchanger

tubes. Many metals, copper and aluminum being specific examples, form adherent oxide
coatings which serve to passivate the surface and prevent further corrosion.

e Chemical reaction fouling involves chemical reactions in the process stream which results in
deposition of material on the heat exchanger tubes. When food products are involved this may

be termed scorching but a wide range of organic materials are subject to similar problems.



e Freezing fouling is said to occur when a portion of the hot stream is cooled to near the freezing
point for one of its components. This is most notable in refineries where paraffin frequently
solidifies from petroleum products at various stages in the refining process, obstructing both
flow and heat transfer.

e Biological fouling is common where untreated water is used as a coolant stream. Problems
range from algae or other microbes to barnacles.

Heat Exchanger Analysis:

Log mean temperature difference (LMTD) method for parallel& counter flow heat exchangers
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dQy =—dQ. = dQ
dQ. = mCCPCdTC

The overall change in temperature difference across the element 1s given by:

d(AT) = dT, —dT,

d(ﬂT}=—dQ{,1 + ! }

mHC‘D_H mccpc

From Equation 5.1 we know that

O = UAAT > dQ=UdAAT
which gives

d

99 _yar

dA

Where 27 =Ta ~Tc 4 any point

Combining Equations 5.29 and 5.30 to eliminate dg .

dAT
1 1
+

= —UATdA

Rearranged,
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For the parallel flow heat exchanger:

‘ﬁj-;. = T;JJ - T:'__i' (535]
"ﬁTE = Th,a - TE‘,D (536)

Integrating 5.34 and substituting mC, =Q/AT :
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Rearranging:
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Where AT, 1s the Log Mean Temperature Difference (LMTD) defined as:

= UAAT,

AT, — AT
AT 2 =71
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Effectiveness-NTU method:

8Q= (T, - T.)dA,

7

c.in

Cold fluid

The effectiveness of heat exchanger given by:

8=q/qmax

The Quax 1S the maximum possible heat transfer. It’s given by:

(max = Coin (tn1 — tc2)
Therefore:

€ = Cp (tp1-t2)/ Coin (ta1 — te1)
or

€ = C¢ (tea~tc1)/ Cuin (tn1 — te1)

Rate of heat transfer then given by;




q =2 * Cuin (ta1 — te1)
dQ=U dA(ty—t.)
dQ= - Cp. dty= C.. dt.
From (2). we have:
dtp =-dQ/Cy and dt. =dQ/C,
Substituting value of dQ in equation (1) and rearranging. we get

1.1
d(ty-to)/(ty-to)=-U dA |ch Cc]

Upon integration:

(t2-te2)/(tnr — te1) = exp [ - (U A/Cy) {1+Cp/C}

& = Ch(th1-tw)/ Conin(tn1 — ter) = Celterter)/Crnin(tni-te1)
Hence,

th2 = th1 — ( & Coninlthi-te1)’ Cn)

and to> = te+( & Cin(thi-te1)/ Ce)

g=1-exp[-(UA/CEH {1+Ct/Cc}/{Crun[(1/Cr)+(1/C]}

If C y < C .. then Cpip= Cp and Cpax= C.. equation (6) becomes:

e=1-exp[-(UA/Cnn) {1+Crin/Cmax}/ {Cuuin[ (1/Crnin) +(1/Crmax) ]}

The NTU 1s given by:

_ 1 — exp[-NTU {1+ R}]
B [1+ R]

£



UNIT -5
BOILING AND
CONDENSATION

Introduction:

The condensation sets in, whenever saturation vapour comes in contact with surface whose temp is lower

than saturation temp corresponding to vapour pressure. It is the reverse of boiling process.

This process occurs whenever saturation vapour comes in contact with surface whose temp is lower than
saturation temp corresponding to vapour pressure. As the vapour condenses, the latent heat is liberated and there
is flow of heat to the surface. The liquid condensate may get sub cooled by contact with the cooled surface and
that may eventually cause more vapour to condensate on the exposed surface or upon the previously formed

condensate.
Types of condensation:

e Film wise condensation

e Drop wise condensation

Film wise condensation:

If the condensate tends to wet the surface and thereby forms a liquid film, then process is known as film
condensation. The heat transferred from vapour to condensate formed on surface by convection and further from
film to cooled surface by conduction. This combined mode of heat transfer reduces the rate of heat transfer and

hence it’s heat transfer rates are lower.

Drop wise condensation:

In this, vapour condenses into small liquid droplets of various sizes and which fall down surface in random
fashion. A large portion of surface exposed to vapour without an insulating film of condensate liquid; hence higher
rates of heat transfer (order of 750 kW/m2) are achieved. Coefficient of heat transfer is 5 to 10 times larger than

with film condensation. Yet this type is extremely difficult to maintain or achieve.
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Laminar film condensation on a vertical wall:

Film wise condensation on a vertical plate can be analyzed on lines proposed by Nusselt (1916). Unless
the velocity of the vapor is very high or the liquid film very thick, the motion of the condensate would be laminar.
The thickness of the condensate film will be a function of the rate of condensation of vapor and the rate at which
the condensate is removed from the surface. On a vertical surface the film thickness will increase gradually from
top to bottom as shown in Fig. Nusselt's analysis of film condensation makes the following simplifying

assumptions
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where L is the plate length.

Total heat transfer rate : q=hy AT, -T,)
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BOILING:

Introduction:

Boiling is a convection process involving a change in phase from liquid to vapor. Boiling may occur when
a liquid is in contact with a surface maintained at a temperature higher than the saturation temperature of the
liquid. If heat is added to a liquid from a submerged solid surface, the boiling process is referred to as pool boiling.
In this process the vapor produced may form bubbles, which grow and subsequently detach themselves from the
surface, rising to the free surface due to buoyancy effects. A common example of pool boiling is the boiling of
water in a vessel on a stove. In contrast, flow boiling orforced convection boiling occurs in a flowing stream and
the boiling surface may itselfbe apportion of the flow passage. This phenomenon is generally associated with two

phase flows through confined passages.

A necessary condition for the occurrence of pool boiling is that the temperature of the heating surface
exceeds the saturation temperature of the liquid. The type of boiling is determined by the temperature of the liquid.
If the temperature of the liquid is below the saturation temperature, the process is called sub cooled or local
boiling. In local boiling, the bubbles formed at the surface eventually condense in the liquid. If the liquid is
maintained at saturation temperature, the process is called saturated or bulk boiling.

There are various distinct regimes of pool boiling in which the heat transfer mechanism differs radically.

The temperature distribution in saturated pool boiling with a liquid vapor interface is shown in the Figure
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The different regimes of boiling are indicated in Figure 2. This specific curve has been obtained from an
electrically heated platinum wire submerged in water b y varying its surface temperature and measuring the
surface heat flux gs. The six regimes of Figure 2 will now be described briefly.

In region I, called the free convection zone, the excess temperature, AT is very small and < 5°C. Here the

liquid near the surface is superheated slightly, the convection currents circulate the liquid and evaporation takes
place at the liquid surface.



Nucleate boiling exists in regions II and III. As the excess temperature, AT is increased, bubbles begin to
form on the surface of the wire at certain localized spots. The bubbles condense in the liquid without reaching the
liquid surface. Region Il is in fact the beginning of nucleate boiling. As the excess temperating is further increased
bubbles are formed more rapidly and rise to the surface of the liquid resulting in rapid evaporation.

This is indicated in region I11. Nucleate boiling exists up to AT < 50° C. The maximum heat flux, known
as the critical heat flux, occurs atpoint A and is of the order of IMW/m2.

The trend of increase of heat flux with increase in excess temperature observed up to region Il is reversed
in region 1V, called the film boiling region. This is due to the fact that bubbles now form so rapidly that they
blanket the heating surface with a vapor film preventing the inflow of fresh liquid from taking their place. Now
the heat must be transferred through this vapor film (by conduction) to the liquid to effect any further boiling.
Since the thermal conductivity of the vapor film is much less than that of the liquid, the value of g. must then
decrease with increase of AT. In region IV the vapor film is not stable and collapses and reforms rapidly. With
further increase in AT the vapor film is stabilized and the heating surface is completely covered by a vapor blanket
and the heat flux is the lowest as shown in region V. The surface temperatures required to maintain a stable film
are high and under these conditions a sizeable amount of heat is lost by the surface due to radiation, as indicated
in region VI.

The phenomenon of stable film boiling can be observed when a drop of water falls on a red hot stove. The
drop does not evaporate immediately but dances a few times on the stove. This is due to the formation of a stable
steam film at the interface between the hot surface and the liquid droplet. From Fig.2 it is clear that high heat
transfer rates are associated with small values of the excess temperature in the nucleate boiling regime. The
equipment used for boiling should be designed to operate in this region only. The critical heat flux point A in
Fig.2 is also called the boiling crisis because the boiling process beyond that point is unstable unless of course,
point B is reached. The temperature at point B is extremely high and normally above the melting point of the
solid. So if the heating of the metallic surface is not limited to point A, the metal may be damaged or it may even
melt. That is why the peak heat flux point is called the burnout point and an accurate knowledge of this point is

very important. Our aim should be to operate the equipment close to this value but never beyond it.



MASS TRANSFER:
Mass transfer is the movement of molecules of one material into another due to the concentration

difference in a system. Mass transfer occurs in the direction of negative concentration gradient, similar to heat

transfer in the direction of negative temperature gradient.

Ficks first law of diffusion:

Concentration
of species B

Concentration -

of species A

- @
AQo—»

The fick’s law for the rate of transfer of species A in x-direction in a binary mixture of A and B can be

expressed as:

ma dCa
—_— = —DAB. CK

Where,

ma = mass flow rate of species A by diffusion, kg/s

A = area through which mass is flowing, m2

4= mass flux of species A i.e. amount of species A that is transferred per unit time and per unit area

A
perpendicular to the direction of transfer, kg/s-m2



D g = diffusion coefficient or mass diffusivity for binary mixture of species A and B, m2/s.

The — ve sign indicates that diffusion takes place in the direction opposite to that of increasing concentration.



RADIATION
Introduction:

Radiation, energy transfer across a system boundary due to a AT, by the mechanism of photon emission or

electromagnetic wave emission.

Because the mechanism of transmission is photon emission, unlike conduction and convection, there need be no

intermediate matter to enable transmission.
A
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The significance of this is that radiation will be the only mechanism for heat transfer whenever a vacuum is

present.

Thermal energy emitted by matter as a result of vibrational androtational movements of molecules, atoms and
electrons. Theenergy is transported by electromagnetic waves (or photons).Radiation requires no medium for its
propagation, therefore, cantake place also in vacuum. All matters emit radiation as long asthey have a finite
(greater than absolute zero) temperature. Therate at which radiation energy is emitted is usually quantified bythe
modified Stefan-Boltzmann law:

Definitions of various terms used in radiation heat transfer:

® Stefan-Boltzman law:
In 1884, Boltzman showed that heat flux energy emitted by radiation from an ideal surface called
black is proportional to its absolute temperature of fourth power.
Ep =0.T* g4
Where:
E» =Emissive Power, the gross energy emitted from an ideal surface per unit area, time.
o =Stefan Boltzman constant, 5.67*108 W/m2K4

T apbs = Absolute temperature of the emitting surface, K.



® Kirchoff’s law:
It states that at any temperature the ratio of total emissive power E to the total absorptive a is a

constant for all substances which are in thermal equilibrium with their environment.

® Planck’s law:
While the Stefan-Boltzman law is useful for studying overall energy emissions, it does not allow

us to treat those interactions, which deal specifically with wavelength, A. This problem was
overcome by another of the modern physicists, Max Plank, who developed a relationship for wave-

based emissions.

® Wein’s displacement law:
The behavior of blackbody radiation is described by the Planck Law, but we can derive from the

Planck Law two other radiation laws that are very useful. The Wien Displacement Law and the

Stefan-Boltzmann Law are illustrated in the following equations.

Steffan - Boltzmann Law: E=0o79

£ AR ; i« Jpor 1
o= 56705 x 107 erg-cm” - K °- sec

(Steffan - Boltzmann Constant)

Wien Displacement Law:

(A In Angstroms T inKelvin)

Radiation heat exchange between two parallel infinite black surfaces:

View factor and View factor Algebra:



Radiation analysis must take account of the fact that not all of one surface ‘sees’ all of another.
This is characterised by the view factor (sometimes called the radiation configuration factor or
shape factor)

The view factor, F, is defined as the fraction of radiation emitted from one surface that is incident
upon another. It is usually given two subscripts, Fij, F12. Fab etc. The first subscript refers to the
emitting surface the second the receiving surface. The mathematical definition of the view factors
Fij and Fj1 are given by the expressions:
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The above equations may be integrated to calculate view factors directly. In some cases, the
integration can be simplified. View factors are also available for a large number of configurations
in tabular, parametric or graphical form for a wide range of geometries. The Catalogue by
Howell (1982) provides a comprehensive and useful source of view factor data.

From inspection of the symmetry between equations

A1 Fij=Aj Fji (Reciprocity rule)

Also for an enclosure of n surfaces:

> F; =1 (Summation rule)

For a convex or flat surface Fi1 =0 (it does not ‘see’ any part of itself)
For a concave surface Fii > 0 (it does ‘see’ part of itself)

Solar Irradiation:
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Angles and Arc Length:
We are well accustomed tothinking of an angle as a twodimensional object. It may be used to find an arc length.

"

Solid Angle:
We generalize the idea of an angle and an arc length to three dimensions and define a solid angle, €, which like
the standard angle has no dimensions. The solid angle, when multiplied by the radius squared will have dimensions

of length squared, or area, and will have the magnitude of the encompassed area.

A=r-dQ

Projected Area:
The area, dA1, as seen from the prospective of a viewer, situated at an angle 6 from the normal to the surface,

will appear somewhat smaller, as cos 6-dA1. This smaller area is termed the projected area.

Aprojected = cos0-Anormal
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